
271

	15	 Incorporating Sound
and Video

In this chapter, you will learn how to
4	 Understand the purpose and scope of the new <audio> and <video> tags

in HTML5.
4	 Play multimedia types and choose formats and codecs.
4	 Use the <video> tag.
4	 Use the <audio> tag.

Playing video and audio on the Web is a bit more difficult than other Web-related tasks.
This stems from the multitude of formats that are available from competing vendors
and open source groups. These formats have varying degrees of support in the popular
modern Web browsers; often they have no support at all in older browsers. Together,
these factors make it difficult to deliver audio and video that’s consistently playable for
all of your visitors.

The addition of the <video> and <audio> tags in HTML5 makes the process of delivering
and playing video and audio more straightforward. Playing multimedia will get easier
over time as newer browsers support the tags and people upgrade their older browsers.
However, for the foreseeable future, it will still be necessary to encode your multimedia
files into multiple formats.

See Also  Do you need only a quick refresher on the topics in this chapter? See the Key Points
section at the end of this chapter.

Practice Files  Before you can use the practice files provided for this chapter, you need
to install them from the book’s companion content page to their default locations. See
“Using the Practice Files” in the beginning of this book for more information.

HTML5_SBS.indb 271 1/13/11 5:06 PM

272   Chapter 	 15	 �Chapter 	15	﻿

What’s New with Audio and Video in HTML5?
Traditionally, developers and designers have most commonly set up pages to play video
and audio on the Web using Adobe Flash. Sites such as YouTube (http://www.youtube.
com) embed video inside of a Flash file. This requires that the end user has the Adobe
Flash player installed.

The HTML5 specification introduces an alternative to that: a standard tag, <video>, which
enables the playing of video content. However, the <video> tag still requires a video file
and also requires end users to have an appropriate player installed on their computers.

For audio clips, the traditional delivery method has been to use the <object> or
<embed> tag to embed a clip on a page. HTML5 provides the <audio> tag to do this
instead.

As of this writing, the <audio> and <video> tags have limited support in Web browsers.
Adding to the complexity is the need to support multiple formats for video, depending
on what your visitor’s browser can play.

This chapter shows you how to take advantage of the new <audio> and <video> tags
and helps to sort out the difficulties surrounding video compatibility. Before going
further, you should understand that at the time of this writing, support for these two new
tags is limited to the following browsers:

●● Internet Explorer 9+

●● Firefox 3.5+

●● Safari 3+

●● Chrome 3+

●● Opera 10.5+

●● iPhone 1+

●● Android 2+

Browsers that don’t support these tags ignore them, but if you want to deliver your audio
or video to a full range of browsers—new and old, you’ll need to be able to do it without
the use of these tags. This chapter shows both the old and new methods.

HTML5_SBS.indb 272 1/13/11 5:06 PM

http://www.youtube.com
http://www.youtube.com

	 HTML Multimedia Basics   273

HTML Multimedia Basics
Before getting into the details of creating multimedia-rich Web pages, you should have a
basic understanding of how HTML5—and previous versions of HTML—present audio and
video clips.

The most common method of placing multimedia content on a Web page is to embed
an audio or video clip in the page so that it plays within the page itself when the visi-
tor clicks a button. For this to work, visitors to your site must be using a Web browser
that supports the type of sound or video file you’re providing, or they must download
and install a plug-in (a helper program) to add support for that file to their browser. If
your audience uses Microsoft Internet Explorer version 5.5 and higher, you can use the
<object> tag for this; otherwise you use the <embed> tag. Or, if your audience uses an
HTML5-compliant browser, you can use the new <audio> and <video> tags for this.

As an alternative, you can link to an audio or video clip so that it plays in an external
application (such as Microsoft Windows Media Player) when the visitor clicks its hyper-
link. For this to work, the visitor must have an external application that supports the type
of sound or video file you’re providing, or they must download and install a separate
program. This technique works the same in all browsers, though, which is a plus. Use the
<a> tag for the link, just like with any other hyperlink. For example:

Playing my song!

This chapter focuses mainly on the embedding type of multimedia presentation.

Multimedia Formats and Containers
Discussion of multimedia on the Web must begin with an understanding of the different
formats. When people talk about video files, they’re usually talking about files with an
.avi, .mp4, or .mkv extension. These extensions are simply indicators of the container
format for the video file itself; they don’t indicate the format in which the video was
encoded.

There are several common container formats, including Ogg (.ogv), Flash Video (.flv
or .f4v), the aforementioned Audio Video Interleave (.avi), MPEG-4 Part 14 (.mp4),
Matroska (.mkv), and many others. See http://en.wikipedia.org/wiki/Container_
format_%28digital%29 for an overview of container formats.

Additionally, video files almost always contain audio tracks. The container file includes
both the video and audio components.

HTML5_SBS.indb 273 1/13/11 5:06 PM

http://en.wikipedia.org/wiki/Container_

274   Chapter 	 15	 �Chapter 	15	﻿

There is also a new format, called WebM, which is similar to Matroska. WebM is an open-
source video container format that will likely grow in popularity due in part to its support
by Google. WebM is meant to be used exclusively with the VP8 video codec and the
Vorbis audio codec (more on codecs in the next section).

Codecs: Decoding the Video and Audio
When a producer (the person or organization making the audio or video available)
encodes multimedia, they choose the format in which to encode the file. The person who
views that video or listens to the audio must have the appropriate decoding software
installed on their computer to play the file. This decoding software is called a codec.

You’ll see the word codec in this chapter and in other publications about video and
audio. The word itself is shorthand for encode/decode (or decode/encode depending
on whom you ask). The codec refers to the style in which the video or audio file was
encoded or formatted. To decode a video or audio file means that the computer uses an
algorithm to decipher the encoded video or audio into a human-consumable form.

Now throw in the Web browser. The browser, such as Internet Explorer, either needs to
have built-in support for a format or needs to have a plug-in available to recognize that
it can play the audio or video file. Luckily, all of the common formats and codecs today
are either supported natively or are readily available in some form of plug-in installer
for the popular Web browsers. As newer browsers that support HTML5 appear, the use
of specific third-party plug-ins—at least for video and audio—will (hopefully) become a
thing of the past.

Just as there are numerous container formats, there are also several common video
encoding formats. Some of the most popular ones include H.264, VP8, DivX, Theora,
and several others. If you plan to do much video work on the Web, you’ll likely need
to account for several different formats and containers to reach the widest possible
audience.

As with video, playing audio through a computer or hand-held mobile devices (such as
SmartPhones) requires a codec to read the file and play it back. Two popular formats are
MPEG-4 Audio Layer 3, which you might recognize as MP3, and AAC, frequently used by
Apple. Other formats include Vorbis, which is frequently used in an Ogg container.

Many of the video formats support profiles, which are essentially the parameters used
when the video is encoded. For example, a high profile H.264 video provides higher
quality but at the cost of a much larger file size—too large for general use on the Web.
For now, it’s sufficient to know that different profiles exist, and different profiles are
appropriate for different applications.

HTML5_SBS.indb 274 1/13/11 5:06 PM

	 HTML Multimedia Basics   275

Which Format to Choose?
If all of this sounds complex, it is. Not only is it tough to choose among the multiple
formats, but whatever your choice, there’s no guarantee that your visitors will be able to
play that format anyway. At a high level, audio is easier than video, so for all intents and
purposes, your energy will be put into working with video formats.

So how do you choose which format to use? The answer is that you don’t choose one
format; you choose three or four. The ultimate goal is to make the video available to the
widest possible audience. With that in mind, you will need to be able to convert a source
video file to several formats to ensure that visitors can play it.

Table 15-1 shows the three primary containers that you’ll use, not including Flash.

Table 15-1  Common Video Formats for the Web
Container Video Codec Audio Codec
Ogg Theora Vorbis
mp4 H.264 AAC
WebM VP8 Vorbis

As of this writing, Microsoft Internet Explorer 9 supports the <video> tag, but it only
supports the H.264 video format. Previous versions of Internet Explorer don’t support the
<video> tag, but don’t worry; you’ll see how to work around that restriction a bit later in
this chapter.

Mozilla Firefox versions 3.5 and later support the WebM and Ogg containers. Safari
supports H.264 video and AAC audio in an mp4 container. Opera supports WebM and
Ogg containers as well. The Ogg container will almost certainly contain Theora video and
Vorbis audio.

File Size and Quality
The word “size” has two meanings for a video clip: the file size and the display size (the
number of pixels vertically and horizontally). As you might expect, these two factors are
related—the larger the clip’s display window, the larger the file size. A clip on a Web page
need not fill the entire monitor; a window of two to three inches is usually sufficient.

The display size is not the only determinant of the file size, however. Some file formats
are smaller than others because they use varying degrees of compression to decrease
their file sizes. A video clip is compressed using a certain compression algorithm, which
is a set of math formulas used to remove excess space in the clip for storage. To play a
compressed clip, the computer playing it must possess an appropriate codec.

HTML5_SBS.indb 275 1/13/11 5:06 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

276   Chapter 	 15	 �Chapter 	15	﻿

Note  A compression algorithm works by identifying repeated characters or patterns in the data
file and substituting more compact codes for them. For example, an algorithm might change
00000000000000000000 to something like 20*0.

Further, video clips vary according to the number of frames per second (fps); more
frames per second means smoother playback and larger file size. A VHS videotape
records at 30 fps, but for Web use, a frame rate of 15 fps works well because it results in
a much smaller file size. You can set the number of frames per second when you record
the video clip, or use a third-party program to decrease the frames per second of a pre-
recorded clip.

When a sound clip is digitized (converted to digital format), a series of sound “snapshots”
are taken per second. These snapshots are called samples. Higher sampling rates (the
number of samples per second) yield higher sound reproduction accuracy, but at the cost
of larger file sizes. Sampling rates for audio clips are measured in kilohertz—for example,
11 KHz, 22K Hz, or 44 KHz.

Note  “Kilo” means thousand; an 11 KHz clip contains approximately 11,000 samples per
second.

Sound clips also have varying sample resolutions, which are the number of bits used to
describe each sample. Common sample resolutions are 8-bit, 16-bit, and 32-bit. The
more bits that are sampled, the larger the file will be.

Sound clips can be recorded in either mono or stereo, referring to the number of audio
channels in the recording. Mono uses a single channel, which is duplicated in each
speaker. Stereo uses two channels, with one channel playing back in each of two speak-
ers. Stereo clips are approximately double the file size of mono ones.

When recording audio clips, you can usually choose between various sampling rates and
resolutions. Here are some of the most common combinations of settings:

Settings Quality
8 KHz, 8-bit, mono Telephone quality
22 MHz, 16-bit, stereo Radio quality
44 KHz, 16-bit, stereo CD quality

Encoding Video
Now that you have a high-level view of video and audio playback on the Web, you might
be wondering how you encode your favorite vacation videos into three formats (four if
you count Flash). The clips provided for the exercises in this chapter are ready to go, but
you will need to prepare your own video clips on your own.

HTML5_SBS.indb 276 1/13/11 5:06 PM

	 Embedding Video Clips   277

Just as playback is complex, so too is encoding. People frequently employ a combination
of software to encode and convert videos between formats. For example, software called
Handbrake is popular for converting video to H.264 and AAC format for playback on
Apple devices, and is also useful for converting video for the Web.

Converting to an Ogg Theora video with Vorbis audio can be accomplished using several
different software packages including ffmpeg2theora, VLC media player, Firefogg (a
plug-in for Firefox), and others. Firefogg, ffmpeg, and several others can also convert to
WebM format.

Tip  If you’re using Firefox (or want to encode video), a simple and effective way to do so is
to use VLC. Be prepared to wait, though. Converting videos between formats can be a slow
process. I used VLC for all the conversions made while writing this chapter.

With the goal of making video on your site widely available, you’ll typically encode your
videos into each of these three formats as well as Flash. Using those four formats makes
the video natively available in new browsers with built-in support for the new <video>
and <audio> tags but still makes Flash available for visitors with older browsers.

Embedding Video Clips
So far, you’ve seen a lot of background material for something that seems like it should
be easy! And to think we’ve only scratched the surface. This section shows how to use
the <video> tag to place video on a page as well as how to fall back to Flash video if
necessary.

Introducing the <video> Tag
At a basic level, the <video> tag looks like this:

<video src="myvideo.ogv"></video>

There are several attributes and different ways to use the <video> tag that make it more
configurable for your needs and the needs of your audience. Several attributes are help-
ful, including:

●● autoplay

●● controls

●● height

●● loop

●● preload

●● width

HTML5_SBS.indb 277 1/13/11 5:06 PM

278   Chapter 	 15	 �Chapter 	15	﻿

Not surprisingly, you use the width and height attributes to set the width and the height
of the video display area on the page, as shown in the following example:

<video src="myvideo.ogv" width="320" height="240"></video>

The controls attribute determines whether a default set of playback controls should
be visible within the browser. This can be helpful and I recommend using it. In fact, if
you don’t use the controls attribute, the visitor has no way to replay the video without
reloading the entire page. How annoying! Here’s an example of the controls attribute:

<video src="myvideo.ogv" controls></video>

The preload attribute tells the browser to begin downloading the video immediately
when the element is encountered. If the video is the central theme of the page, and it’s
likely that all (or most) visitors will want to watch the video, then it’s a good idea to use
the preload option. However, if the video element is a small part of the page and visitors
aren’t likely to watch it, then preloading the video is just a waste of bandwidth. Here’s the
preload attribute in action:

<video src="myvideo.ogv" preload></video>

The loop attribute tells the browser to restart the video immediately when it’s finished
playing, as shown here:

<video src="myvideo.ogv" loop></video>

Finally, the autoplay attribute makes the video automatically play when the page is
loaded. For most purposes, this is generally a bad idea from a usability standpoint. Most
users will want control over the video; they’ll play it when their attention is focused
and they’re ready to consume the video element. And even with the autoplay attribute
enabled, your visitors might have that option disabled in their browsers. For that reason,
along with the usability problem, I recommend not using the autoplay attribute with one
notable exception: if you don’t include the controls attribute, then you need to include
autoplay; otherwise, the video won’t play and visitors will have no way to start it. Here’s
an example of the autoplay attribute:

<video src="myvideo.ogv" autoplay></video>

Putting it together, a real-world video element looks like this:

<video src="myvideo.ogv" width="320" height="240" controls></video>

The preceding examples all work well if your visitors have a browser such as Firefox 3.5 or
later or Opera 10.5 or later. However, what if a visitor has Internet Explorer? In that case,
you’ll need to encode the video so that it can be played in Internet Explorer. The <video>

HTML5_SBS.indb 278 1/13/11 5:06 PM

	 Embedding Video Clips   279

tag enables more than one source (via the source element) which you can capitalize on
by including links to multiple versions of a video. You can also add a type attribute to
tell the browser a bit more about the video file to which you’re linking. For example, a
<video> tag that includes the Ogg container video in the preceding example as well as
an H.264 video in an mp4 container and a WebM container video would look like this:

<video width="320" height="240" controls>
 <source src="myvideo.mp4" type="video/mp4">
 <source src="myvideo.ogv" type="video/ogg">
 <source src="myvideo.webm" type="video/webm">
</video>

Additionally, an optional codec portion of the type attribute can also indicate to the
browser which codec the audio and video portions of the file use. The use of the codec
option is beyond the scope of this book.

With those two options you now have Internet Explorer 9 and Safari covered (thanks
to the mp4 container); Firefox and Chrome covered (thanks to the Ogg container); and
other browsers covered too (thanks to the WebM container).

The <embed> Tag: Your Fallback Plan
But what happens when someone visits your site with an older browser that doesn’t
support HTML5? In this case, they won’t be able to view video through the <video> tag.
Luckily, older browsers will simply ignore the video tag so its mere presence won’t cause
errors. However, you still need to find a way for those visitors to view the video.

You’ll find that most users of Internet Explorer also have Adobe Flash installed. With
that in mind, you can also include a Flash version of the video on your page. You can
include an extra element with the help of the <embed> tag. Adobe Flash can play H.264
encoded video with AAC audio; therefore, you don’t need to convert your video to yet
another format. Here’s an example:

<embed src="myvideo.mp4" type="application/x-shockwave-flash"
 width="320" height="240" allowscriptaccess="always"
 allowfullscreen="true">

Placing a Video Clip on a Web Page
Now that you’ve got a handle on the theory, it’s time to put it into practice with an
exercise.

In this exercise, you’ll add a video to an HTML page as an embedded clip with the
<video> tag, and provide an alternative copy as a downloadable link with the <a> tag.
You’ll also practice embedding the clip with the <embed> tag.

HTML5_SBS.indb 279 1/13/11 5:06 PM

280   Chapter 	 15	 �Chapter 	15	﻿

SET UP  Use the winter.html, myvideo.mp4, myvideo.wehm, and myvideo.ogv files
in the practice file folder for this topic. These files are located in the Documents\
Microsoft Press\HTML5 SBS\15Video\AddVideo.

	 1.	 Open the winter.html file in Notepad and in Internet Explorer 9 (or some other
HTML5-compliant browser).

	 2.	 In the #main division, immediately before its closing </div> tag, enter the code for
inserting video.

<p>Watch the following video to learn how to prune and cover a rose bush
for winter.</p>
<video width="320" height="240" autoplay controls>
<source src="myvideo.mp4">
<source src="myvideo.webm">
<source src="myvideo.ogv">
</video>
</div>

	 3.	 Refresh Internet Explorer to view the clip on the page.

You should see the video and it should start playing automatically. If it doesn’t, you
might not be using an HTML5-compliant browser.

HTML5_SBS.indb 280 1/13/11 5:06 PM

	 Embedding Video Clips   281

	 4.	 Return to Notepad. Immediately before the closing </video> tag, add an <embed>
tag to play the clip via Flash.

<p>Watch the following video to learn how to prune and cover a rose bush
for winter.</p>
<video width="320" height="240" autoplay controls>
<source src="myvideo.mp4">
<source src="myvideo.webm">
<source src="myvideo.ogv">
<embed src="myvideo.mp4" type="application/x-shockwave-flash"
 width="320" height="240" allowscriptaccess="always"
 allowfullscreen="true">

</video>
</div>

	 5.	 Enter the following after the <embed> tag:

<p>Click here to download a high-resolution version of the clip in AVI
format.</p>

	 6.	 Make the words Click here into a hyperlink that points to the file myvideo.avi.

<p>Click here to download a high-resolution
version of the clip in AVI format.</p>

	 7.	 Save your work in Notepad, and then refresh the page in Internet Explorer to see
the changes.

HTML5_SBS.indb 281 1/13/11 5:06 PM

282   Chapter 	 15	 �Chapter 	15	﻿

Note  If a security warning appears in the browser window, you might need to click a
button to allow the Flash content to play.

CLEAN UP  Close the Notepad and Internet Explorer windows.

Incorporating Audio on a Web Page
The good news is that by working your way through the video information in this chap-
ter, you’ve already learned nearly all the background that you need to play audio on a
Web page. The bad news is that the same format and encoding problems that plague
video on the Web also apply to audio, except that the audio problems are a bit worse.
This section examines the <audio> tag and its alternatives.

Playing Audio with the <audio> Tag
You might be thinking that playing audio on a Web page would be easier than video,
but for the most part, it’s not. You still need to provide for different browsers and encode
your audio into different formats. In addition, for the most part, your visitors will still
need special plug-ins to play audio. With that said, the <audio> tag is new to HTML5
and, assuming that the browser manufacturers can come to some type of agreement
(and that’s about as possible as me winning the lottery), playing audio on the Web
should become easier.

Like the <video> tag, the <audio> tag supports multiple sources. With no common
format, you’ll need to encode the audio multiple times to try to get the audio out to the
widest possible audience. Also like the <video> tag, the <audio> tag supports attributes
such as controls, autoplay, loop, and preload. Therefore, the syntax for the <audio> tag is
essentially the same as the syntax for the <video> tag.

Tip  There are numerous applications that convert audio between formats. As with the video
conversions, I used VLC to convert the audio when writing this chapter. VLC is available at
http://www.videolan.org/vlc/.

I’ve had good success when using the MP3 and Ogg Vorbis formats simultaneously. You’ll
find support for at least one of these two formats in Firefox, Chrome, Safari, Opera, and
Internet Explorer 9. Again, as with video, you’ll need to embed your audio stream into a
Flash object so older versions of Internet Explorer can use it.

HTML5_SBS.indb 282 1/13/11 5:06 PM

http://www.videolan.org/vlc/

	 Incorporating Audio on a Web Page   283

Here’s an example that shows the <audio> tag with two files, which are called with the
help of the <source> element that you saw earlier in the video section of this chapter:

<audio controls>
 <source src="myaudio.mp3"></source>
 <source src="myaudio.ogg"></source>
</audio>

Playing Audio in Older Browsers
As with video, playing audio in older browsers requires the <embed> tag. When used
with audio, you’ll typically use two attributes, src and autostart; src configures the source
of the audio, and autostart controls whether the audio clip should play automatically
upon page load. Adding the <embed> tag to the previous example results in this HTML:

<audio autoplay loop>
<source src="myaudio.mp3">
<source src="myaudio.ogg">
<embed src="myaudio.mp3">
</audio>

By default, content included with <embed> will be automatically played. If you don’t
want this, then add the autostart=”false” attribute tag, like so:

<embed src="myaudio.mp3" autostart="false">

Note  Even when using <embed> to include audio, the visitor must still have software capable
of playing the type of file being sent.

One other attribute commonly used with <embed> is the loop attribute. The loop attri-
bute, when set to true or infinite, restarts the audio clip when it completes. It can also be
set to false to indicate that the audio clip should play only once. However, the default
is to play the audio clip only once; therefore, omitting the loop attribute is the same as
setting it to false.

Placing an Audio Clip on a Web Page
Now you get to practice placing an audio clip. In this exercise, you’ll add an audio file to
an HTML5 page.

HTML5_SBS.indb 283 1/13/11 5:06 PM

284   Chapter 	 15	 �Chapter 	15	﻿

SET UP  Use the index.html, myaudio.mp3, and myaudio.ogg.files in the practice file
folder for this topic. These files are located in the Documents\Microsoft Press\HTML5
SBS\15Video\AddAudio.

	 1.	 Open the audio.html file contained in the source code for the book.

	 2.	 Immediately above the closing </div> tag for the #main division, add the codes for
the audio clip.

<audio autoplay loop>
<source src="myaudio.mp3">
<source src="myaudio.ogg">
</audio>

</div>

</p>

	 2.	 Before the closing </audio> tag, add an <embed> tag that will play the clip in a
non–HTML5-compliant browser.

<audio autoplay loop>
<source src="myaudio.mp3">
<source src="myaudio.ogg">
<embed src="myaudio.mp3">

</audio>

</div>

	 3.	 Open Internet Explorer 9 or later and view the page.

The audio should start playing automatically, looping back to the beginning when
it completes.

CLEAN UP  Close the Notepad and Internet Explorer windows.

HTML5_SBS.indb 284 1/13/11 5:06 PM

	 Key Points   285

Key Points
●● Incorporating sound and video is accomplished by providing video and audio files

in multiple formats to ensure that your visitors can view the multimedia no matter
what browser they’re using.

●● It’s important to understand the different containers and codecs available for video
and audio and how those are supported across your visitor’s browsers.

●● HTML5 introduces the <video> and <audio> tags, which enable multimedia to be
included in Web pages.

●● Older browsers don’t support the <audio> and <video> tags, so it’s important
to provide video in legacy formats such as Flash to enable visitors who use these
browswer to view the content as well.

●● Use the <embed> tag to include audio and video content in a format that non–
HTML5-compliant browsers can interpret.

HTML5_SBS.indb 285 1/13/11 5:06 PM

Chapter at a Glance

Use Canvas
elements
on a page,
page 303

Add
JavaScript

code,
page 289

HTML5_SBS.indb 286 1/13/11 5:06 PM

